We investigate both a novel inner and outer bound on the rate region of a 2-user Gaussian broadcast channel with finite, heterogeneous blocklength constraints (HB-GBC). In particular, we introduce a new, modified Sato-type outer bound that can be applied in the finite blocklength regime and does not require the same marginal property. We then develop and analyze concatenated shell codes, which are suitable for the HB-GBC. Especially, to achieve a smaller decoding latency for the user with shorter blocklength constraint when successive interference cancellation is used, we derive the number of symbols needed to successfully early decode the other user's message. We numerically compare our derived outer bound to the best known achievable rate regions. Numerical results show that the new early decoding performance is significantly improved compared to the state of the art, and performs very close to the asymptotic limit.
翻译:我们调查了在2个用户高斯广播频道的速率区域(HB-GBC)上一个新型的内外部和外外部界限,该频道有一定的、不同的轮廓限制(HB-GBC)。特别是,我们引入了一个新的、经过修改的佐藤型外框,可以适用于有限轮廓制度,而不需要同样的边际属性。然后,我们开发并分析了适合HB-GBC的组合式贝壳代码。特别是,在使用连续取消干扰时,为使用较短轮廓限制的用户实现较小的解码长度,我们得出了尽早解码其他用户信息所需的符号数量。我们用数字将我们衍生出来的外框与已知的最佳可实现速率区域进行了对比。数字结果显示,新的早期解码性能与艺术状态相比有了显著改善,并且非常接近于无序限制。