Index tracking is a popular form of asset management. Typically, a quadratic function is used to define the tracking error of a portfolio and the look back approach is applied to solve the index tracking problem. We argue that a forward looking approach is more suitable, whereby the tracking error is expressed as expectation of a function of the difference between the returns of the index and of the portfolio. We also assume that there is an uncertainty in the distribution of the assets, hence a robust version of the optimization problem needs to be adopted. We use Bregman divergence in describing the deviation between the nominal and actual distribution of the components of the index. In this scenario, we derive the optimal robust index tracking strategy in a semi-analytical form as a solution of a system of nonlinear equations. Several numerical results are presented that allow us to compare the performance of this robust strategy with the optimal non-robust strategy. We show that, especially during market downturns, the robust strategy can be very advantageous.


翻译:指数跟踪是一种受欢迎的资产管理形式。 通常, 使用一个二次函数来定义投资组合的跟踪错误, 并且用回看方法来解决指数跟踪问题。 我们争辩说, 前瞻性方法更合适, 即跟踪错误表现为对指数和投资组合回报率差异的预期值的预期值。 我们还假设资产分配存在不确定性, 因此需要采用一个稳健的优化问题版本。 我们使用布雷格曼差异来描述指数各组成部分的名义和实际分布的偏差。 在这种情形下, 我们以半分析形式得出最佳强势指数跟踪战略, 作为非线性等式系统的一种解决方案。 提出了若干数字结果, 使我们能够将这一稳健战略的绩效与最佳的非暴动战略进行比较。 我们显示, 特别是在市场下滑期间, 稳健的战略可能非常有利。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
8+阅读 · 2019年7月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月23日
Arxiv
3+阅读 · 2018年4月9日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
专知会员服务
51+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
8+阅读 · 2019年7月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员