Application partitioning and code offloading are being researched extensively during the past few years. Several frameworks for code offloading have been proposed. However, fewer works attempted to address issues occurred with its implementation in pervasive environments such as frequent network disconnection due to high mobility of users. Thus, in this paper, we proposed a fault tolerant algorithm that helps in consolidating the efficiency and robustness of application partitioning and offloading frameworks. To permit the usage of different fault tolerant policies such as replication and checkpointing, the devices are grouped into high and low reliability clusters. Experimental results shown that the fault tolerant algorithm can easily adapt to different execution conditions while incurring minimum overhead.


翻译:过去几年来,正在对应用分区和卸载代码进行广泛研究,提出了若干卸载代码的框架,然而,在用户流动性高导致网络频繁断开等普遍环境中,试图解决的问题的工程较少,因此,在本文件中,我们提出了有助于整合应用分区和卸载框架的效率和稳健性的错误容忍算法。为了允许使用不同的错误容忍政策,如复制和检查站,这些装置被分为高低可靠性集群。 实验结果表明,错误容忍算法可以很容易地适应不同的执行条件,同时产生最低的管理费。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
4+阅读 · 2019年8月22日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
SlowFast Networks for Video Recognition
Arxiv
4+阅读 · 2019年4月18日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
4+阅读 · 2019年8月22日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员