Modern connected vehicles (CVs) frequently require diverse types of content for mission-critical decision-making and onboard users' entertainment. These contents are required to be fully delivered to the requester CVs within stringent deadlines that the existing radio access technology (RAT) solutions may fail to ensure. Motivated by the above consideration, this paper exploits content caching with a software-defined user-centric virtual cell (VC) based RAT solution for delivering the requested contents from a proximity edge server. Moreover, to capture the heterogeneous demands of the CVs, we introduce a preference-popularity tradeoff in their content request model. To that end, we formulate a joint optimization problem for content placement, CV scheduling, VC configuration, VC-CV association and radio resource allocation to minimize long-term content delivery delay. However, the joint problem is highly complex and cannot be solved efficiently in polynomial time. As such, we decompose the original problem into a cache placement problem and a content delivery delay minimization problem given the cache placement policy. We use deep reinforcement learning (DRL) as a learning solution for the first sub-problem. Furthermore, we transform the delay minimization problem into a priority-based weighted sum rate (WSR) maximization problem, which is solved leveraging maximum bipartite matching (MWBM) and a simple linear search algorithm. Our extensive simulation results demonstrate the effectiveness of the proposed method.
翻译:现代连通车辆(CV)往往要求特派团关键决策和机载用户娱乐所需的不同类型内容。这些内容必须在现有无线电接入技术(RAT)解决方案可能无法确保的严格期限内完全交付给提出请求者CV。出于上述考虑,本文利用内容与软件定义的以用户为中心的虚拟手机(VC)基于RAT解决方案混在一起,从近缘服务器上交付所要求的内容。此外,为了捕捉CV的不同需求,我们在其内容请求模式中引入了偏好-大众取舍。为此,我们为内容放置、CV日程安排、VC配置、VC-CV协会和无线电资源分配制定联合优化问题,以尽量减少长期内容交付延误。然而,共同问题非常复杂,无法在多边时间有效解决。因此,我们将原始问题转化为缓存放置问题,而内容交付延迟最小化问题。我们使用深度强化学习(DRL)作为其内容配置的学习解决方案,用于内容配置CVVV、VC-C-CV的时间安排和无线电资源配置,以最大限度地减少长期内容交付延迟交付延误。此外,我们采用最优化的排序方法,将最优化的S-RMBM(最优化的升级的升级的升级的进度)升级的升级的升级的升级为最优先。此外。我们的拟议方法,将最优化的升级的升级的升级的升级的升级的压。此外,将一个最优化的升级的升级的升级的升级的升级方法转化为的升级的升级的升级的升级的升级的升级的压。此外,是双向。