Recent years have disclosed a remarkable proliferation of compute-intensive applications in smart cities. Such applications continuously generate enormous amounts of data which demand strict latency-aware computational processing capabilities. Although edge computing is an appealing technology to compensate for stringent latency related issues, its deployment engenders new challenges. In this survey, we highlight the role of edge computing in realizing the vision of smart cities. First, we analyze the evolution of edge computing paradigms. Subsequently, we critically review the state-of-the-art literature focusing on edge computing applications in smart cities. Later, we categorize and classify the literature by devising a comprehensive and meticulous taxonomy. Furthermore, we identify and discuss key requirements, and enumerate recently reported synergies of edge computing enabled smart cities. Finally, several indispensable open challenges along with their causes and guidelines are discussed, serving as future research directions.


翻译:近些年来,在智能城市中,计算密集型应用显著地激增。这些应用不断生成大量数据,需要严格的长期认知计算处理能力。尽管边缘计算是一种令人感兴趣的技术,可以弥补严格的延迟相关问题,但其部署带来了新的挑战。在这次调查中,我们强调边缘计算在实现智能城市愿景方面的作用。首先,我们分析边际计算模式的演变。随后,我们批判性地审查侧重于智能城市边际计算应用的最新文献。随后,我们通过设计全面和细致的分类法,对文献进行分类和分类。此外,我们确定和讨论关键要求,并列举最近报告的边际计算促进智能城市的协同效应。最后,我们讨论了几个不可或缺的公开挑战及其原因和指导方针,作为未来的研究方向。

0
下载
关闭预览

相关内容

智慧城市(英语:Smart City)是指利用各种信息技术或创新意念,集成城市的组成系统和服务,以提升资源运用的效率,优化城市管理和服务,以及改善市民生活质量。智慧城市把新一代信息技术充分运用在城市的各行各业之中的基于知识社会下一代创新(创新2.0)的城市信息化高级形态,实现信息化、工业化与城镇化深度融合,有助于缓解“大城市病”,提高城镇化质量,实现精细化和动态管理,并提升城市管理成效和改善市民生活质量。关于智慧城市的具体定义比较广泛,目前在国际上被广泛认同的定义是,智慧城市是新一代信息技术支撑、知识社会下一代创新(创新2.0)环境下的城市形态,强调智慧城市不仅仅是物联网、云计算等新一代信息技术的应用,更重要的是通过面向知识社会的创新2.0的方法论应用,构建用户创新、开放创新、大众创新、协同创新为特征的城市可持续创新生态。
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
14+阅读 · 2020年10月26日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
35+阅读 · 2019年11月7日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Generative Adversarial Networks: A Survey and Taxonomy
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
14+阅读 · 2020年10月26日
A Survey on Edge Intelligence
Arxiv
51+阅读 · 2020年3月26日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
35+阅读 · 2019年11月7日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Generative Adversarial Networks: A Survey and Taxonomy
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Top
微信扫码咨询专知VIP会员