Syntactic NL or succinctly SNL was first introduced in 2017, analogously to SNP, as a ``syntactically''-defined natural subclass of NL (nondeterministic logarithmic-space complexity class) using a restricted form of logical sentences, starting with second-order ``functional'' existential quantifiers followed by first-order universal quantifiers, in close connection to the so-called linear space hypothesis. We further explore various properties of this complexity class SNL to achieve the better understandings of logical expressibility in NL. For instance, SNL does not enjoy the dichotomy theorem unless L=NL. To express the ``complementary'' problems of SNL problems logically, we introduce $μ$SNL, which is an extension of SNL by allowing the use of $μ$-terms. As natural variants of SNL, we further study the computational complexity of monotone and optimization versions of SNL, respectively called MonoSNL and MAXSNL. We further consider maximization problems that are logarithmic-space approximable with only constant approximation ratios. We then introduce a natural subclass of MAXSNL, called MAX$τ$SNL, which enjoys such limited approximability.


翻译:句法NL(简称SNL)于2017年首次提出,类比于SNP,它是通过受限逻辑语句形式定义的NL(非确定性对数空间复杂度类)的自然子类。其逻辑结构始于二阶“函数型”存在量词,后接一阶全称量词,与所谓的线性空间假设密切相关。本文进一步探究SNL复杂度类的多种性质,以深化对NL中逻辑表达能力的理解。例如,除非L=NL,否则SNL不具备二分法定理。为在逻辑上表达SNL问题的“互补”问题,我们引入μSNL,这是通过允许使用μ项对SNL的扩展。作为SNL的自然变体,我们进一步研究了单调版本与优化版本SNL的计算复杂度,分别称为MonoSNL与MAXSNL。我们还考虑了仅能以常数近似比在对数空间内近似求解的最大化问题,进而引入MAXSNL的自然子类MAXτSNL,该类具有此类有限近似能力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员