Multimodal imaging has transformed neuroscience research. While it presents unprecedented opportunities, it also imposes serious challenges. Particularly, it is difficult to combine the merits of the interpretability attributed to a simple association model with the flexibility achieved by a highly adaptive nonlinear model. In this article, we propose an orthogonalized kernel debiased machine learning approach, which is built upon the Neyman orthogonality and a form of decomposition orthogonality, for multimodal data analysis. We target the setting that naturally arises in almost all multimodal studies, where there is a primary modality of interest, plus additional auxiliary modalities. We establish the root-$N$-consistency and asymptotic normality of the estimated primary parameter, the semi-parametric estimation efficiency, and the asymptotic validity of the confidence band of the predicted primary modality effect. Our proposal enjoys, to a good extent, both model interpretability and model flexibility. It is also considerably different from the existing statistical methods for multimodal data integration, as well as the orthogonality-based methods for high-dimensional inferences. We demonstrate the efficacy of our method through both simulations and an application to a multimodal neuroimaging study of Alzheimer's disease.


翻译:多式成像改变了神经科学研究。它带来了前所未有的机会,但也带来了严峻的挑战。特别是,很难将简单联系模式的可解释性与高度适应性非线性模式所实现的灵活性结合起来。在本条中,我们提议采用一个以Neyman orthomical orthomicality和一种分解或分解形式为主的机器学习方法,该方法以多式数据分析为基础,以内曼为主,是一种分解或分解或分解形式。我们把几乎所有多式联运研究中自然产生的环境作为目标,这些研究有主要的感兴趣模式,加上额外的辅助模式。我们建立了估算主要参数的根值-N$一致性和无孔性常态性常态性,半对准估计效率,以及预测主要模式效应的信任带的无孔隙性有效性。我们的建议在相当程度上享有模型可解释性和模型灵活性。我们的建议还把其与现有的多式联运数据整合统计方法以及高度推断度和高维度度度度度假设方法相区别很大。我们通过模拟和现代研究的方式展示了我们的方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月28日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
18+阅读 · 2019年1月16日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员