This paper develops a framework for incorporating prior information into sequential multiple testing procedures while maintaining asymptotic optimality. We define a weighted log-likelihood ratio (WLLR) as an additive modification of the standard LLR and use it to construct two new sequential tests: the Weighted Gap and Weighted Gap-Intersection procedures. We prove that both procedures provide strong control of the family-wise error rate. Our main theoretical contribution is to show that these weighted procedures are asymptotically optimal; their expected stopping times achieve the theoretical lower bound as the error probabilities vanish. This first-order optimality is shown to be robust, holding in high-dimensional regimes where the number of null hypotheses grows and in settings with random weights, provided that mild, interpretable conditions on the weight distribution are met.


翻译:本文提出了一种在保持渐近最优性的同时,将先验信息纳入序贯多重检验程序的框架。我们定义了加权对数似然比(WLLR)作为标准对数似然比的加法修正,并利用其构建了两种新的序贯检验方法:加权间隙(Weighted Gap)与加权间隙-交集(Weighted Gap-Intersection)程序。我们证明了这两种程序均能对族错误率提供强控制。主要的理论贡献在于表明这些加权程序具有渐近最优性:当错误概率趋近于零时,其期望停止时间达到理论下界。该一阶最优性被证明具有鲁棒性,在零假设数量增长的高维场景以及随机权重设置中均成立,前提是权重分布满足温和且可解释的条件。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月13日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员