This paper deals with the $\lambda$-labeling and $L(2,1)$-coloring of simple graphs. A $\lambda$-labeling of a graph $G$ is any labeling of the vertices of $G$ with different labels such that any two adjacent vertices receive labels which differ at least two. Also an $L(2,1)$-coloring of $G$ is any labeling of the vertices of $G$ such that any two adjacent vertices receive labels which differ at least two and any two vertices with distance two receive distinct labels. Assume that a partial $\lambda$-labeling $f$ is given in a graph $G$. A general question is whether $f$ can be extended to a $\lambda$-labeling of $G$. We show that the extension is feasible if and only if a Hamiltonian path consistent with some distance constraints exists in the complement of $G$. Then we consider line graph of bipartite multigraphs and determine the minimum number of labels in $L(2,1)$-coloring and $\lambda$-labeling of these graphs. In fact we obtain easily computable formulas for the path covering number and the maximum path of the complement of these graphs. We obtain a polynomial time algorithm which generates all Hamiltonian paths in the related graphs. A special case is the Cartesian product graph $K_n\Box K_n$ and the generation of $\lambda$-squares.
翻译:本文涉及 $lambda 标签 和 $( 2, 1) 的简单图表 的 $ lambda 标签 。 $ lambda 标签 $G$ 是一个图形 $G$ 标签, 上面贴有不同的标签, 上面贴有不同的标签, 上面贴有不同的标签 。 上面贴有不同的标签, 上面贴有 $G$ 标签, 上面贴着 $lambda 标签, 上面贴有不同的标签 。 上面写着 $G$G$ 标签, 上面写着两个相邻的, 上面写着 $G$ 标签, 上面写着 $, 上面写着 $L, 上面写着 $ labda 标签 。 我们的汉密尔顿路径在 $ G$ 的补卡 。 然后我们考虑双边多面的 图表, 上面写着着 $ 美元 和 美元 等 的 数字 的 。 。 在 美元 里格 的 的 里格 和 里格 里 中 里 里 里 的 的 和 里 里 里 的 上 的 的 的 。