As civil discourse increasingly takes place online, misinformation and the polarization of news shared in online communities have become ever more relevant concerns with real world harms across our society. Studying online news sharing at scale is challenging due to the massive volume of content which is shared by millions of users across thousands of communities. Therefore, existing research has largely focused on specific communities or specific interventions, such as bans. However, understanding the prevalence and spread of misinformation and polarization more broadly, across thousands of online communities, is critical for the development of governance strategies, interventions, and community design. Here, we conduct the largest study of news sharing on reddit to date, analyzing more than 550 million links spanning 4 years. We use non-partisan news source ratings from Media Bias/Fact Check to annotate links to news sources with their political bias and factualness. We find that, compared to left-leaning communities, right-leaning communities have 105% more variance in the political bias of their news sources, and more links to relatively-more biased sources, on average. We observe that reddit users' voting and re-sharing behaviors generally decrease the visibility of extremely biased and low factual content, which receives 20% fewer upvotes and 30% fewer exposures from crossposts than more neutral or more factual content. This suggests that reddit is more resilient to low factual content than Twitter. We show that extremely biased and low factual content is very concentrated, with 99% of such content being shared in only 0.5% of communities, giving credence to the recent strategy of community-wide bans and quarantines.


翻译:随着民间话语日益在网上出现,线上社区共享新闻的错误和两极分化变得日益成为我们社会上真实世界的危害问题。研究在线新闻分享的规模具有挑战性,因为成千上万个社区的用户共享了大量内容。因此,现有研究主要侧重于特定社区或具体干预措施,例如禁令。然而,了解错误和分化的普遍程度和蔓延程度,在数千个在线社区中,对于制定治理战略、干预措施和社区设计而言,更为广泛的程度和扩散至关重要。在这里,我们进行关于重编新闻分享的最大研究,分析超过5.5亿个链接长达4年。我们使用媒体Bias/Fact Check的无党派新闻来源评级来说明其政治偏差和事实性。我们发现,与左派社区相比,右派社区在政治偏见和分化方面的差异增加了105 %, 与相对偏差程度较低的来源的联系也更多。我们发现,重新编辑用户的投票和重新分享的行为通常会减少极端偏差和低级内容的准确性程度。我们发现,最近这种事实性或低级内容的公开性程度比事实性程度要少于20 %。

0
下载
关闭预览

相关内容

【CIKM2020-教程】仇恨言论假新闻检测,157页ppt
专知会员服务
36+阅读 · 2020年10月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Arxiv
112+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2018年4月5日
Arxiv
5+阅读 · 2018年1月23日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Top
微信扫码咨询专知VIP会员