3D anomaly detection (3D-AD) plays a critical role in industrial manufacturing, particularly in ensuring the reliability and safety of core equipment components. Although existing 3D datasets like Real3D-AD and MVTec 3D-AD offer broad application support, they fall short in capturing the complexities and subtle defects found in real industrial environments. This limitation hampers precise anomaly detection research, especially for industrial equipment components (IEC) such as bearings, rings, and bolts. To address this challenge, we have developed a point cloud anomaly detection dataset (IEC3D-AD) specific to real industrial scenarios. This dataset is directly collected from actual production lines, ensuring high fidelity and relevance. Compared to existing datasets, IEC3D-AD features significantly improved point cloud resolution and defect annotation granularity, facilitating more demanding anomaly detection tasks. Furthermore, inspired by generative 2D-AD methods, we introduce a novel 3D-AD paradigm (GMANet) on IEC3D-AD. This paradigm generates synthetic point cloud samples based on geometric morphological analysis, then reduces the margin and increases the overlap between normal and abnormal point-level features through spatial discrepancy optimization. Extensive experiments demonstrate the effectiveness of our method on both IEC3D-AD and other datasets.
翻译:三维异常检测(3D-AD)在工业制造中发挥着关键作用,尤其在保障核心设备部件的可靠性与安全性方面。尽管现有三维数据集如Real3D-AD和MVTec 3D-AD提供了广泛的应用支持,但其在捕捉真实工业环境中的复杂结构与细微缺陷方面仍显不足。这一局限阻碍了精准异常检测研究的发展,特别是针对轴承、环件、螺栓等工业设备部件(IEC)。为应对这一挑战,我们开发了专用于真实工业场景的点云异常检测数据集(IEC3D-AD)。该数据集直接采集自实际生产线,确保了高保真度与相关性。与现有数据集相比,IEC3D-AD显著提升了点云分辨率与缺陷标注粒度,能够支持更严苛的异常检测任务。此外,受生成式二维异常检测方法启发,我们在IEC3D-AD上提出了一种新颖的三维异常检测范式(GMANet)。该范式基于几何形态分析生成合成点云样本,继而通过空间差异优化缩小正常与异常点级特征间的边界并增强其重叠度。大量实验证明了该方法在IEC3D-AD及其他数据集上的有效性。