Deep neural networks (DNNs) are increasingly applied in safety-critical domains, such as self-driving cars, unmanned aircraft, and medical diagnosis. It is of fundamental importance to certify the safety of these DNNs, i.e. that they comply with a formal safety specification. While safety certification tools exactly answer this question, they are of no help in debugging unsafe DNNs, requiring the developer to iteratively verify and modify the DNN until safety is eventually achieved. Hence, a repair technique needs to be developed that can produce a safe DNN automatically. To address this need, we present SpecRepair, a tool that efficiently eliminates counter-examples from a DNN and produces a provably safe DNN without harming its classification accuracy. SpecRepair combines specification-based counter-example search and resumes training of the DNN, penalizing counter-examples and certifying the resulting DNN. We evaluate SpecRepair's effectiveness on the ACAS Xu benchmark, a DNN-based controller for unmanned aircraft, and two image classification benchmarks. The results show that SpecRepair is more successful in producing safe DNNs than comparable methods, has a shorter runtime, and produces safe DNNs while preserving their classification accuracy.


翻译:深神经网络(DNNs)越来越多地应用于安全关键领域,如自驾驶汽车、无人驾驶飞机和医疗诊断。验证这些DNS的安全性至关重要,即它们符合正式的安全规格。安全认证工具恰好回答了这个问题,但它们在调试不安全的DNNs方面毫无帮助,要求开发者在最终实现安全之前反复核查和修改DNN。因此,需要开发一种能够自动产生安全DNNN的修理技术。为了满足这一需要,我们提出了SpecRepair,这是一个有效消除DNN的反试的工具,并产生一个可察觉的安全的DNNNN,同时又不损害其分类的准确性。SpecRepair综合了基于规格的反样搜索,并恢复了DNNN的培训,惩罚反样并认证了DNN。我们评估了SpecRepair在AC Xu基准上的效力,一个基于DNNN的D控制器,以及两个图像分类基准,结果显示SREpirs在维护安全性方面比DNNR的精确性更短。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员