We introduce visual hints expansion for guiding stereo matching to improve generalization. Our work is motivated by the robustness of Visual Inertial Odometry (VIO) in computer vision and robotics, where a sparse and unevenly distributed set of feature points characterizes a scene. To improve stereo matching, we propose to elevate 2D hints to 3D points. These sparse and unevenly distributed 3D visual hints are expanded using a 3D random geometric graph, which enhances the learning and inference process. We evaluate our proposal on multiple widely adopted benchmarks and show improved performance without access to additional sensors other than the image sequence. To highlight practical applicability and symbiosis with visual odometry, we demonstrate how our methods run on embedded hardware.
翻译:我们引入视觉提示来引导立体比对,以改善一般化。我们的工作受到计算机视觉和机器人中视觉惯性Odoricat(VIO)的强力驱动,在计算机视觉和机器人中,一组分散且分布不均的特征点是一个场景。为了改进立体比对,我们建议将2D提示提升到3D点。这些分散且分布不均的3D视觉提示使用3D随机几何图扩大,这加强了学习和推理过程。我们评估了我们关于多个广泛采用的基准的建议,并显示在无法使用图像序列以外的其他传感器的情况下提高了性能。为了突出实际应用性和与视觉视像反光测量的共生性,我们展示了我们的方法是如何在嵌入硬件上运行的。