Graph complements G(n) of cyclic graphs are circulant, vertex-transitive, claw-free, strongly regular, Hamiltonian graphs with a Z(n) symmetry, Shannon capacity 2 and known Wiener and Harary index. There is an explicit spectral zeta function and tree or forest data. The forest-tree ratio converges to e. The graphs G(n) are Cayley graphs and so Platonic with isomorphic unit spheres G(n-3)^+, complements of path graphs. G(3d+3) are homotop to wedge sums of two d-spheres and G(3d+2),G(3d+4) are homotop to d-spheres, G(3d+1)^+ are contractible, G(3d+2)^+,G(3d+3)^+ are d-spheres. Since disjoint unions are dual to Zykov joins, graph complements of 1-dimensional discrete manifolds G are homotop to a point, a sphere or a wedge sums of spheres. If the length of every connected component of a 1-manifold is not divisible by 3, the graph complement of G is a sphere. In general, the graph complement of a forest is either contractible or a sphere. All induced strict subgraphs of G(n) are either contractible or homotop to spheres. The f-vectors G(n) or G(n)^+ satisfy a hyper Pascal triangle relation, the total number of simplices are hyper Fibonacci numbers. The simplex generating functions are Jacobsthal polynomials, generating functions of k-king configurations on a circular chess board. While the Euler curvature of circle complements G(n) is constant by symmetry, the discrete Gauss-Bonnet curvature of path complements G(n)^+ can be expressed explicitly from the generating functions. There is now a non-trivial 6 periodic Gauss-Bonnet curvature universality in the complement of Barycentric limits. The Brouwer-Lefschetz fixed point theorem produces a 12-periodicity of the Lefschetz numbers of all graph automorphisms of G(n). There is also a 12-periodicity of Wu characteristic. This is a 4 periodicity in dimension.These are manifestations of stable homotopy features, but combinatorial.
翻译:圆形图形的G( n) 与 G( g) 相补充。 G( n) 是 Cayley 图形, 因而是有异形单元的 Platonic 。 G( n) 的补充路径图。 G( 3d+ 3) 是同级的, 汉密尔顿图形, 带有Z( n) 的对称、 香农能力 2 和已知的 Wiener 和 Harary 指数。 有明确的光谱 zeta 函数和树或森林数据 。 森林树树比( g( n) 是同级的。 G( n) 是双向的, 双向的离子数。 G( 3d+3) 的离子( ) 是双向的, 双向的离子( 数) 。 双向的 G- 离子( 平流) 或离子的离子( ) 。 如果G( g) 直径( 直径) 的直径( 直径) 直径( 直径) 直径) 直径( 直径), 直径( 直径) 直径), 直至直方( G) 直至直方( 直方( 直方) 直方( 直方) 直方) 直方( 直方( 直立) 直方) 直方) 。