CORL is an open-source library that provides single-file implementations of Deep Offline Reinforcement Learning algorithms. It emphasizes a simple developing experience with a straightforward codebase and a modern analysis tracking tool. In CORL, we isolate methods implementation into distinct single files, making performance-relevant details easier to recognise. Additionally, an experiment tracking feature is available to help log metrics, hyperparameters, dependencies, and more to the cloud. Finally, we have ensured the reliability of the implementations by benchmarking a commonly employed D4RL benchmark. The source code can be found https://github.com/tinkoff-ai/CORL
翻译:CORL是一个开放源码库,它提供深离强化学习算法的单一文件实施,它强调一个简单的开发经验,使用直截了当的代码库和一个现代分析跟踪工具。在CORL中,我们将方法实施分为不同的单个文档,使与性能有关的细节更容易识别。此外,还有一个实验跟踪功能,帮助记录测量尺度、超参数、依赖性以及云层等。最后,我们通过对通用的D4RL基准进行基准基准基准衡量,确保了执行的可靠性。源代码可以找到 https://github.com/tinkoff-ai/CORL。