We introduce a new class of attitude control laws for rotational systems, which generalizes the use of the Euler axis-angle representation beyond quaternion-based formulations. Using basic Lyapunov's stability theory and the notion of extended $K_{\infty}$ functions, we developed a method for determining and enforcing the global asymptotic stability of the single fixed point of the resulting closed-loop (CL) scheme. In contrast with traditional quaternion-based methods, the proposed generalized axis-angle approach enables greater flexibility in the design of the control law, which is of great utility when employed in combination with a switching scheme whose transition state depends on the angular velocity of the controlled rotational system. Through simulation and real-time experimental results, we demonstrate the effectiveness of the proposed approach. According to the recorded data, in the execution of high-speed tumble-recovery maneuvers, the new method consistently achieves shorter stabilization times and requires lower control effort relative to those corresponding to the quaternion-based and geometric-control methods used as benchmarks.
翻译:本文提出了一类适用于旋转系统的新型姿态控制律,该控制律将欧拉轴角表示的应用推广至四元数表述之外。基于李雅普诺夫稳定性基本理论与扩展$K_{\infty}$函数的概念,我们提出了一种方法,用于确定并保证所得闭环(CL)方案中单一不动点的全局渐近稳定性。与传统的基于四元数的方法相比,所提出的广义轴角方法为控制律设计提供了更大的灵活性,当与切换方案结合使用时尤其有效,因为该切换方案的过渡状态取决于受控旋转系统的角速度。通过仿真与实时实验结果,我们验证了所提方法的有效性。根据记录的数据,在执行高速翻滚恢复机动时,相较于作为基准的基于四元数的方法与几何控制方法,新方法始终能实现更短的稳定时间,并需要更低的控制能耗。