Serverless computing has emerged as a new paradigm for running short-lived computations in the cloud. Due to its ability to handle IoT workloads, there has been considerable interest in running serverless functions at the edge. However, the constrained nature of the edge and the latency sensitive nature of workloads result in many challenges for serverless platforms. In this paper, we present LaSS, a platform that uses model-driven approaches for running latency-sensitive serverless computations on edge resources. LaSS uses principled queuing-based methods to determine an appropriate allocation for each hosted function and auto-scales the allocated resources in response to workload dynamics. LaSS uses a fair-share allocation approach to guarantee a minimum of allocated resources to each function in the presence of overload. In addition, it utilizes resource reclamation methods based on container deflation and termination to reassign resources from over-provisioned functions to under-provisioned ones. We implement a prototype of our approach on an OpenWhisk serverless edge cluster and conduct a detailed experimental evaluation. Our results show that LaSS can accurately predict the resources needed for serverless functions in the presence of highly dynamic workloads, and reprovision container capacity within hundreds of milliseconds while maintaining fair share allocation guarantees.
翻译:无服务器计算已成为云中运行短期计算的新模式。 由于它有能力处理 IOT 工作量,人们相当有兴趣在边缘运行无服务器功能。然而,工作量边缘的边缘和长期敏感性限制性质导致无服务器平台面临许多挑战。在本文中,我们介绍了使用模型驱动方法在边缘资源上运行长期敏感服务器无服务器计算的平台LaSS。LaSS使用基于原则的排队方法确定每个托管功能的适当分配,并针对工作量动态自动调整所分配的资源。LaSS使用公平分配方法,保证在超负荷情况下为每个功能分配最低限度的资源。此外,它利用基于集装箱通缩和终止的资源回收方法,将过度配置的功能的资源重新配置到供应不足的功能。我们在OpenWisk服务器无边端集群上实施了我们的方法的原型,并进行了详细的实验评估。我们的结果显示,在高度动态工作量分配的情况下,LaSS可以准确预测无服务器功能所需要的资源,同时保持高度动态工作量分配的数以百计。