Motivated by a similar approach for Born-Oppenheimer molecular dynamics, this paper proposes an extended "shadow" Lagrangian density for quantum states of superfluids. The extended Lagrangian contains an additional field variable that is forced to follow the wave function of the quantum state through a rapidly oscillating extended harmonic oscillator. By considering the adiabatic limit for large frequencies of the harmonic oscillator, we can derive the two equations of motions, a Schr\"odinger-type equation for the quantum state and a wave equation for the extended field variable. The equations are coupled in a nonlinear way, but each equation individually is linear with respect to the variable that it defines. The computational advantage of this new system is that it can be easily discretized using linear time stepping methods, where we propose to use a Crank-Nicolson-type approach for the Schr\"odinger equation and an extended leapfrog scheme for the wave equation. Furthermore, the difference between the quantum state and the extended field variable defines a consistency error that should go to zero if the frequency tends to infinity. By coupling the time-step size in our discretization to the frequency of the harmonic oscillator we can extract an easily computable consistency error indicator that can be used to estimate the numerical error without any additional costs. The findings are illustrated in numerical experiments.


翻译:本文在对 Born- Oppenheimer 分子动态采取类似方法的推动下, 提出一个用于超浮度量度状态的扩展“ 阴影” Lagrangian 密度。 扩展的 Lagrangian 包含一个额外的字段变量, 该变量被迫通过快速振动扩展的声波振动器来跟随量子状态的波函数。 通过考虑调和振动器大频率的异比限制, 我们可以为量子状态和扩展字段变量的波方程得出两个方程式, 即 Schr\" 类异比方程。 等方以非线性方式结合, 但每个方程式对于它定义的变量都是线性。 这个新系统的计算优势是, 它可以很容易地使用线性加速度振动加速振动器的频率, 我们提议对Schr\" 振动方程方程式使用crank- Nicolson 类型方法, 以及波方程式扩展的跳式公式。 此外, 量性状态和扩展的波方方方方形方方方方方方程方程之间的差异以非线性方式组合, 但每个方程式的公式的线是直线度的线性计算, 直径的计算, 当我们使用的直径的精确度, 直线性误误误差, 直到直为我们使用的直线度, 直线度, 直线性误误误差值, 直到直到直到直到直到直线性误差值, 如果我们方 直线性定的精确度, 直线性标值的精确度, 直到直线性标度, 直线性标到直到直到直线性测到直到直到直到直线性测到直到直到直到直线性测到直到直到直到直到直值的精确度, 我们的精确度的精确度的精确度的精确度的精确度值的精确值的精确度, 。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年10月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2019年8月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月9日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年8月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员