Improved understanding of characteristics related to weather forecast accuracy in the United States may help meteorologists develop more accurate predictions and may help Americans better interpret their daily weather forecasts. This article examines how spatio-temporal characteristics across the United States relate to forecast accuracy. We cluster the United States into six weather regions based on weather and geographic characteristics and analyze the patterns in forecast accuracy within each weather region. We then explore the relationship between climate characteristics and forecast accuracy within these weather regions. We conclude that patterns in forecast errors are closely related to the unique climates that characterize each region.


翻译:增进对美国天气预报准确性相关特征的了解可能有助于气象学家制定更准确的预测,并有助于美国人更好地解释其日常天气预报。本文章审查了美国各地时空特征与预测准确性的关系。我们根据天气和地理特征将美国分为六个天气区域,分析每个天气区域的预测准确性模式。然后我们探讨这些天气区域气候特征与预测准确性之间的关系。我们的结论是,预测错误的格局与每个区域特有的气候密切相关。</s>

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员