Matching markets involve heterogeneous agents (typically from two parties) who are paired for mutual benefit. During the last decade, matching markets have emerged and grown rapidly through the medium of the Internet. They have evolved into a new format, called Online Matching Markets (OMMs), with examples ranging from crowdsourcing to online recommendations to ridesharing. There are two features distinguishing OMMs from traditional matching markets. One is the dynamic arrival of one side of the market: we refer to these as online agents while the rest are offline agents. Examples of online and offline agents include keywords (online) and sponsors (offline) in Google Advertising; workers (online) and tasks (offline) in Amazon Mechanical Turk (AMT); riders (online) and drivers (offline when restricted to a short time window) in ridesharing. The second distinguishing feature of OMMs is the real-time decision-making element. However, studies have shown that the algorithms making decisions in these OMMs leave disparities in the match rates of offline agents. For example, tasks in neighborhoods of low socioeconomic status rarely get matched to gig workers, and drivers of certain races/genders get discriminated against in matchmaking. In this paper, we propose online matching algorithms which optimize for either individual or group-level fairness among offline agents in OMMs. We present two linear-programming (LP) based sampling algorithms, which achieve online competitive ratios at least 0.725 for individual fairness maximization (IFM) and 0.719 for group fairness maximization (GFM), respectively. We conduct extensive numerical experiments and results show that our boosted version of sampling algorithms are not only conceptually easy to implement but also highly effective in practical instances of fairness-maximization-related models.


翻译:相匹配的市场有不同的代理商(通常来自两个政党),他们为互惠而配对。在过去十年中,匹配的市场已经出现,并通过互联网的媒体迅速增长。它们已经演变成一种新的格式,称为在线匹配市场(OMMs),从众包到在线建议到共享。有两个特点区分了传统匹配市场中的OMMs。一个是市场的一面的动态到来:我们称之为在线代理商,而其余的则是离线代理商。在线和离线代理商的例子包括:Google广告中的关键词(在线)和赞助者(离线);亚马逊机械土耳其(AMT)中的工人(在线)和任务(离线);在共享中,驱动者(在线)和驱动者(在有限时间窗口中),OMMMs是实时决策要素。然而,研究表明,这些OMMM(在线代理商)做出决策的算法在离线代理商的匹配率率上存在差异。例如,低社会经济地位区(在线公平(在线)很难匹配工作(在线),我们在在线纸质交易中也显示某些内部性别。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年9月10日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年11月17日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
0+阅读 · 2021年11月11日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年9月10日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员