Privacy-preserving inference of convolutional neural networks (CNNs) using homomorphic encryption has emerged as a promising approach for enabling secure machine learning in untrusted environments. In our previous work, we introduced a matrix-encoding strategy that allows convolution and matrix multiplication to be efficiently evaluated over encrypted data, enabling practical CNN inference without revealing either the input data or the model parameters. The core idea behind this strategy is to construct a three-dimensional representation within ciphertexts that preserves the intrinsic spatial structure of both input image data and model weights, rather than flattening them into conventional two-dimensional encodings. However, this approach can operate efficiently $only$ when the number of available plaintext slots within a ciphertext is sufficient to accommodate an entire input image, which becomes a critical bottleneck when processing high-resolution images. In this paper, we address this fundamental limitation by proposing an improved encoding and computation framework that removes the requirement that a single encrypted ciphertext must fully contain one input image. Our method reformulates the data layout and homomorphic operations to partition high-resolution inputs across multiple ciphertexts while preserving the algebraic structure required for efficient convolution and matrix multiplication. As a result, our approach enables privacy-preserving CNN inference to scale naturally beyond the slot-capacity constraints of prior methods, making homomorphic evaluation of CNNs practical for higher-resolution and more complex datasets.
翻译:利用同态加密实现卷积神经网络(CNN)的隐私保护推理已成为在不可信环境中实现安全机器学习的一种有前景的方法。在我们先前的工作中,我们引入了一种矩阵编码策略,该策略允许在加密数据上高效地评估卷积和矩阵乘法运算,从而实现在不泄露输入数据或模型参数的情况下进行实用的CNN推理。该策略的核心思想是在密文中构建一个三维表示,以保留输入图像数据和模型权重固有的空间结构,而不是将它们扁平化为传统的二维编码。然而,该方法$仅$当密文内可用的明文槽数量足以容纳整个输入图像时才能高效运行,这在处理高分辨率图像时成为一个关键瓶颈。本文通过提出一种改进的编码与计算框架来解决这一根本性限制,该框架消除了单个加密密文必须完整包含一个输入图像的要求。我们的方法重新规划了数据布局和同态操作,将高分辨率输入分割到多个密文中,同时保留了高效卷积和矩阵乘法所需的代数结构。因此,我们的方法使得隐私保护CNN推理能够自然地扩展到超越先前方法的槽容量限制,从而使CNN的同态评估对于更高分辨率和更复杂的数据集变得实用。