In this paper, we propose a novel Kalman Filter (KF)-based uplink (UL) joint communication and sensing (JCAS) scheme, which can significantly reduce the range and location estimation errors due to the clock asynchronism between the base station (BS) and user equipment (UE). Clock asynchronism causes time-varying time offset (TO) and carrier frequency offset (CFO), leading to major challenges in uplink sensing. Unlike existing technologies, our scheme does not require knowing the location of the UE in advance, and retains the linearity of the sensing parameter estimation problem. We first estimate the angle-of-arrivals (AoAs) of multipaths and use them to spatially filter the CSI. Then, we propose a KF-based CSI enhancer that exploits the estimation of Doppler with CFO as the prior information to significantly suppress the time-varying noise-like TO terms in spatially filtered CSIs. Subsequently, we can estimate the accurate ranges of UE and the scatterers based on the KF-enhanced CSI. Finally, we identify the UE's AoA and range estimation and locate UE, then locate the dumb scatterers using the bi-static system. Simulation results validate the proposed scheme. The localization root mean square error of the proposed method is about 20 dB lower than the benchmarking scheme.
翻译:在本文中,我们提出了一个基于Kalman过滤器(KF)的基于上行距离(UL)的联合通信和感测(JCAS)计划,该计划可以大大减少由于基站和用户设备(UE)之间的时空同步关系而导致的距离和地点估计误差,因为基站和用户设备(UE)之间的时空偏偏移。 钟偏移导致时间变化时间偏移(TO)和承运人频率偏移(CFO),从而导致上行距离感测(CFO)方面的重大挑战。 与现有技术不同,我们的计划并不要求事先知道UE的位置,并保留感测参数估计问题的线性。 我们首先估计多路路点的降角度(AoAAs)并使用它们空间过滤CSI。 之后,我们提出一个基于KF的CSI增强器,将Dopullr的估算作为先前信息,大大抑制时间变化的噪音变化,类似于空间过滤CSI的术语。 随后,我们可以估计基于KF-hananced CA范围(Simalalal) rualal) 计划(A-Lisal A-Lislation)的Slational) 和Slationalizalizal the A-Lislational the Lapalizationaldaldal planut the A.