A significant part of CO2 emissions is due to high electricity consumption in residential buildings. Using load shifting can help to improve the households' energy efficiency. To nudge changes in energy consumption behavior, simple but powerful architectures are vital. This paper presents a novel algorithm of a recommendation system generating device usage recommendations and suggests a framework for evaluating its performance by analyzing potential energy cost savings. As a utility-based recommender system, it models user preferences depending on habitual device usage patterns, user availability, and device usage costs. As a context-aware system, it requires an external hourly electricity price signal and appliance-level energy consumption data. Due to a multi-agent architecture, it provides flexibility and allows for adjustments and further enhancements. Empirical results show that the system can provide energy cost savings of 18% and more for most studied households.
翻译:二氧化碳排放量的很大一部分是由于住宅建筑的高用电量造成的。 使用负载转换可以帮助提高住户的能源效率。 为预测能源消费行为的变化,简单但强大的建筑至关重要。 本文介绍了产生设备使用建议的建议系统的新算法,并提出了一个框架,通过分析潜在的能源成本节约来评估其绩效。 作为一个基于公用事业的建议系统,它根据习惯设备使用模式、用户可用性以及设备使用成本来模拟用户的偏好。 作为一个符合环境需要的系统,它需要外部小时电价信号以及设备水平的能源消费数据。 由于多试剂结构,它提供了灵活性,并允许调整和进一步改进。 经验性结果显示,该系统可以为大多数研究家庭提供18%以上的能源成本节约。