The design of efficient nonparametric estimators has long been a central problem in statistics, machine learning, and decision making. Classical optimal procedures often rely on strong structural assumptions, which can be misspecified in practice and complicate deployment. This limitation has sparked growing interest in structure-agnostic approaches -- methods that debias black-box nuisance estimates without imposing structural priors. Understanding the fundamental limits of these methods is therefore crucial. This paper provides a systematic investigation of the optimal error rates achievable by structure-agnostic estimators. We first show that, for estimating the average treatment effect (ATE), a central parameter in causal inference, doubly robust learning attains optimal structure-agnostic error rates. We then extend our analysis to a general class of functionals that depend on unknown nuisance functions and establish the structure-agnostic optimality of debiased/double machine learning (DML). We distinguish two regimes -- one where double robustness is attainable and one where it is not -- leading to different optimal rates for first-order debiasing, and show that DML is optimal in both regimes. Finally, we instantiate our general lower bounds by deriving explicit optimal rates that recover existing results and extend to additional estimands of interest. Our results provide theoretical validation for widely used first-order debiasing methods and guidance for practitioners seeking optimal approaches in the absence of structural assumptions. This paper generalizes and subsumes the ATE lower bound established in \citet{jin2024structure} by the same authors.
翻译:高效非参数估计器的设计长期以来一直是统计学、机器学习与决策制定领域的核心问题。经典最优方法通常依赖于强结构假设,这些假设在实践中可能被错误设定,从而增加了部署的复杂性。这一局限性引发了人们对结构无关方法日益增长的兴趣——这些方法无需施加结构先验即可对黑盒干扰估计进行去偏。因此,理解这些方法的基本极限至关重要。本文对结构无关估计器可达到的最优误差率进行了系统性研究。我们首先证明,对于估计因果推断中的核心参数——平均处理效应(ATE),双重稳健学习达到了最优的结构无关误差率。随后,我们将分析拓展至一类依赖于未知干扰函数的泛函,并确立了去偏/双重机器学习(DML)的结构无关最优性。我们区分了两种机制——一种可实现双重稳健性,另一种则不能——这导致一阶去偏具有不同的最优速率,并证明 DML 在两种机制下均为最优。最后,我们通过推导显式最优速率来实例化一般下界,这些速率恢复了现有结果并拓展至其他感兴趣的估计量。我们的结果为广泛使用的一阶去偏方法提供了理论验证,并为在缺乏结构假设时寻求最优方法的实践者提供了指导。本文推广并包含了同一作者在 \citet{jin2024structure} 中建立的 ATE 下界。