In a multilingual or sociolingual configuration Intra-sentential Code Switching (ICS) or Code Mixing (CM) is frequently observed nowadays. In the world, most of the people know more than one language. CM usage is especially apparent in social media platforms. Moreover, ICS is particularly significant in the context of technology, health, and law where conveying the upcoming developments are difficult in one's native language. In applications like dialog systems, machine translation, semantic parsing, shallow parsing, etc. CM and Code Switching pose serious challenges. To do any further advancement in code-mixed data, the necessary step is Language Identification. In this paper, we present a study of various models - Nave Bayes Classifier, Random Forest Classifier, Conditional Random Field (CRF), and Hidden Markov Model (HMM) for Language Identification in English - Telugu Code Mixed Data. Considering the paucity of resources in code mixed languages, we proposed the CRF model and HMM model for word level language identification. Our best performing system is CRF-based with an f1-score of 0.91.
翻译:在多语言或社会语言的组合中,现在经常观察到多种语言或多种语言的代码转换(ICS)或代码转换(CM),在世界上,大多数人知道一种以上的语言。在社交媒体平台中,CM的使用尤其明显。此外,ICS在技术、卫生和法律方面对于传达即将出现的发展在个人本族语言中尤为困难。在诸如对话系统、机器翻译、语义解解解析、浅调解等应用中,CM和代码转换等应用带来了严重的挑战。为了在代码混合数据中取得任何进一步的进展,必要的步骤是语言识别。在本文件中,我们介绍了对各种模型的研究――Nave Bayes分类器、随机森林分类器、条件性随机场和隐蔽马可夫英语语言识别模型—Telgugui代码混合数据。考虑到混合语言资源稀缺,我们提出了通用报告格式模式和HMM语言识别模式。我们的最佳表现系统是以F1为0.91核心的通用报告格式。