Artificial intelligence and data-driven networks will be integral part of 6G systems. In this article, we comprehensively discuss implementation challenges and need for architectural changes in 5G radio access networks for integrating machine learning (ML) solutions. As an example use case, we investigate user equipment (UE) positioning assisted by deep learning (DL) in 5G and beyond networks. As compared to state of the art positioning algorithms used in today's networks, radio signal fingerprinting and machine learning (ML) assisted positioning requires smaller additional feedback overhead; and the positioning estimates are made directly inside the radio access network (RAN), thereby assisting in radio resource management. In this regard, we study ML-assisted positioning methods and evaluate their performance using system level simulations for an outdoor scenario. The study is based on the use of raytracing tool, a 3GPP 5G NR compliant system level simulator and DL framework to estimate positioning accuracy of the UE. We evaluate and compare performance of various DL models and show mean positioning error in the range of 1-1.5m for a 2-hidden layer DL architecture with appropriate feature-modeling. Building on our performance analysis, we discuss pros and cons of various architectures to implement ML solutions for future networks and draw conclusions on the most suitable architecture.
翻译:人工智能和数据驱动网络将是6G系统的组成部分。在本条中,我们全面讨论了5G无线电接入网络在整合机器学习(ML)解决方案方面的实施挑战和结构变化需要。举例来说,我们调查5G网络和网络以外的深层学习(DL)所辅助的用户设备(UE)定位情况。与今天网络中所使用的最新定位算法相比,无线电信号指纹和机器学习(ML)辅助定位要求增加更多的反馈管理;定位估计直接在无线电接入网络(RAN)内部进行,从而协助无线电资源管理。在这方面,我们研究ML辅助定位方法,并用系统级模拟来评估其在室外情景方面的性能。研究的基础是使用3GPP 5G NR兼容系统级别模拟器和DL框架来估计UE的准确性。我们评估和比较各种DL模型的性能,并显示在2HDL层DL结构中存在平均定位错误,从而协助无线电资源管理。我们用系统级模拟的定位方法评估并评估其性能分析我们未来各种结构的模型。