In-memory key-value datastores have become indispensable building blocks of modern cloud-native infrastructures, yet their evolution faces scalability, compatibility, and sustainability constraints. The current literature lacks an experimental evaluation of state-of-the-art tools in the domain. This study addressed this timely gap by benchmarking Redis alternatives and systematically evaluating Valkey, KeyDB, and Garnet under realistic workloads within Kubernetes deployments. The results demonstrate clear trade-offs among the benchmarked data systems. Our study presents a comprehensive performance and viability assessment of the emerging in-memory key-value stores. Metrics include throughput, tail latency, CPU and memory efficiency, and migration complexity. We highlight trade-offs between performance, compatibility, and long-term viability, including project maturity, community support, and sustained development.


翻译:内存键值数据库已成为现代云原生基础设施不可或缺的构建模块,但其演进面临着可扩展性、兼容性和可持续性方面的制约。当前文献缺乏对该领域最新工具的实验性评估。本研究通过基准测试 Redis 替代方案,并在 Kubernetes 部署环境下对 Valkey、KeyDB 和 Garnet 进行实际工作负载下的系统评估,填补了这一及时的研究空白。结果表明,所测试的数据系统之间存在明确的权衡取舍。本研究对新兴的内存键值存储进行了全面的性能与可行性评估,评估指标包括吞吐量、尾部延迟、CPU 与内存效率以及迁移复杂度。我们重点分析了性能、兼容性和长期可行性之间的权衡关系,具体涵盖项目成熟度、社区支持及持续发展等方面。

0
下载
关闭预览

相关内容

Redis 是一个使用 C 语言写成的,开源的 key-value 数据库。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员