Ending poverty in all its forms everywhere is the number one Sustainable Development Goal of the UN 2030 Agenda. To monitor the progress towards such an ambitious target, reliable, up-to-date and fine-grained measurements of socioeconomic indicators are necessary. When it comes to socioeconomic development, novel digital traces can provide a complementary data source to overcome the limits of traditional data collection methods, which are often not regularly updated and lack adequate spatial resolution. In this study, we collect publicly available and anonymous advertising audience estimates from Facebook to predict socioeconomic conditions of urban residents, at a fine spatial granularity, in four large urban areas: Atlanta (USA), Bogot\'a (Colombia), Santiago (Chile), and Casablanca (Morocco). We find that behavioral attributes inferred from the Facebook marketing platform can accurately map the socioeconomic status of residential areas within cities, and that predictive performance is comparable in both high and low-resource settings. We also show that training a model on attributes of adult Facebook users, aged more than 25, leads to a more accurate mapping of socioeconomic conditions in all cities. Our work provides additional evidence of the value of social advertising media data to measure human development.
翻译:在所有地方,消除一切形式的贫困都是联合国2030年议程的第1个可持续发展目标。为了监测实现这样一个雄心勃勃的目标、可靠、最新和精细衡量社会经济指标的进展,有必要对社会经济指标进行监测。在社会经济发展方面,新的数字痕迹可以提供补充数据来源,以克服传统数据收集方法的局限性,而传统数据收集方法往往没有定期更新,缺乏适当的空间分辨率。在这项研究中,我们从Facebook收集公开和匿名广告受众估计数,以微小的空间颗粒预测四个大城市地区的城市居民的社会经济条件:亚特兰大(美国)、波哥大(哥伦比亚)、圣地亚哥(智利)和卡萨布兰卡(摩洛哥)。我们发现,从脸书营销平台推断的行为属性可以准确地描绘城市住宅区的社会经济状况,预测业绩在高资源环境和低资源环境中是相似的。我们还表明,对25岁以上的成人脸书用户的属性进行培训,可以更准确地描绘所有城市的社会经济状况。我们的工作提供了社会广告媒体数据价值的额外证据,以衡量人类发展。