The vast majority of existing methods and systems for causal inference assume that all variables under consideration are categorical or numerical (e.g., gender, price, blood pressure, enrollment). In this paper, we present CausalNLP, a toolkit for inferring causality from observational data that includes text in addition to traditional numerical and categorical variables. CausalNLP employs the use of meta-learners for treatment effect estimation and supports using raw text and its linguistic properties as both a treatment and a "controlled-for" variable (e.g., confounder). The library is open-source and available at: https://github.com/amaiya/causalnlp.


翻译:绝大多数现有的因果推断方法和制度都假定审议中的所有变量都是绝对的或数字的(例如性别、价格、血压、招生),在本文中,我们介绍CausalNLP,这是一个从观察数据中推断因果关系的工具,除了传统的数字和绝对变量外,还包括文字。CausalNLP使用元清除器进行治疗效果估计,支持使用原始文本及其语言特性作为治疗和“控制”变量(例如, confounder)。图书馆是开放的,可在以下网址查阅:https://github.com/amaiya/causalnp。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年12月10日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2018年12月19日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年8月24日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年12月10日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2018年12月19日
Arxiv
23+阅读 · 2018年8月3日
Top
微信扫码咨询专知VIP会员