Visual graphics, such as plots, charts, and figures, are widely used to communicate statistical conclusions. Extracting information directly from such visualizations is a key sub-problem for effective search through scientific corpora, fact-checking, and data extraction. This paper presents a framework for automatically extracting compared variables from statistical charts. Due to the diversity and variation of charting styles, libraries, and tools, we leverage a computer vision based framework to automatically identify and localize visualization facets in line graphs, scatter plots, or bar graphs and can include multiple series per graph. The framework is trained on a large synthetically generated corpus of matplotlib charts and we evaluate the trained model on other chart datasets. In controlled experiments, our framework is able to classify, with 87.5% accuracy, the correlation between variables for graphs with 1-3 series per graph, varying colors, and solid line styles. When deployed on real-world graphs scraped from the internet, it achieves 72.8% accuracy (81.2% accuracy when excluding "hard" graphs). When deployed on the FigureQA dataset, it achieves 84.7% accuracy.
翻译:图表、 图表和图表等视觉图形被广泛用于交流统计结论。 从这些可视化中直接提取信息是通过科学公司、 事实检查和数据提取进行有效搜索的一个关键子问题。 本文为从统计图表中自动提取比较变量提供了一个框架。 由于图表样式、 图书馆和工具的多样性和差异, 我们利用基于计算机的愿景框架自动识别线图、 散图或条形图中的可视化方面并将其本地化, 并且可以包含每个图的多个序列。 框架是用大量合成生成的配方略图集来培训的, 我们在其他图表数据集中评估经过培训的模型。 在受控制的实验中, 我们的框架能够以87.5%的精确度来分类每个图1-3系列的图表、 不同颜色和固线样式之间的相关变量。 当安装在从互联网中报废的真世界图形上时, 它实现了72.8%的准确度( 在排除“ 硬” 图表时, 精确度为81.2 % ) 。 当部署在图表QA 上时, 它达到84. 准确度84.7% 。