Shannon's Index of Difficulty ($SID$), a logarithmic relation between movement-amplitude and target-width, is reputable for modelling movement-time in pointing tasks. However, it cannot resolve the inherent speed-accuracy trade-off, where emphasizing accuracy compromises speed and vice versa. Effective target-width is considered as spatial adjustment, compensating for accuracy. However, for compensating speed, no significant adjustment exists in the literature. Real-life pointing tasks are both spatially and temporally unconstrained. Spatial adjustment alone is insufficient for modelling these tasks due to several human factors. To resolve this, we propose $ANTASID$ (A Novel Temporal Adjustment to $SID$) formulation with detailed performance analysis. We hypothesized temporal efficiency of interaction as a potential temporal adjustment factor ($t$), compensating for speed. Considering spatial and/or temporal adjustments to $SID$, we conducted regression analyses using our own and benchmark datasets in both controlled and uncontrolled scenarios. The $ANTASID$ formulation showed significantly superior fitness values and throughput in all the scenarios.
翻译:Shannon的“困难指数”(SID$)是运动点与目标点之间的对数关系,对于在点点任务中模拟运动时间是值得称道的。然而,它无法解决强调精确度折合速度和反之亦然的内在速度-准确性权衡。有效的目标点边被视为空间调整,以补偿准确性。然而,为了补偿速度,文献中不存在重大调整。真实生命点任务在空间和时间上都是不受限制的。由于若干人为因素,空间调整本身不足以模拟这些任务。为了解决这个问题,我们提议用详细的业绩分析来制订$ANTASID(以美元为新时差调整)的公式。我们假设互动的时间效率是可能的时值调整系数(美元),以补偿速度。考虑到空间和/或时间调整以美元为美元,我们利用我们自己的和基准数据集在受控制和不受控制的情景中进行了回归分析。美元(ANTASID$)的公式显示在所有情景中都大大高于健康值和吞吐量。