dame-flame is a Python package for performing matching for observational causal inference on datasets containing discrete covariates. This package implements the Dynamic Almost Matching Exactly (DAME) and Fast Large-Scale Almost Matching Exactly (FLAME) algorithms, which match treatment and control units on subsets of the covariates. The resulting matched groups are interpretable, because the matches are made on covariates (rather than, for instance, propensity scores), and high-quality, because machine learning is used to determine which covariates are important to match on. DAME solves an optimization problem that matches units on as many covariates as possible, prioritizing matches on important covariates. FLAME approximates the solution found by DAME via a much faster backward feature selection procedure. The package provides several adjustable parameters to adapt the algorithms to specific applications, and can calculate treatment effects after matching. Descriptions of these parameters, details on estimating treatment effects, and further examples, can be found in the documentation at https://almost-matching-exactly.github.io/DAME-FLAME-Python-Package/


翻译:在包含离散共变数的数据集中, 匹配观测因果推断的匹配功能是一个 Python 软件包。 这个软件包执行动态几乎匹配完全( DAME) 和快速大比例几乎匹配完全( FLAME) 算法, 与共变数子组的处理和控制单位匹配。 由此产生的匹配组可以解释, 因为匹配是在共变数( 而不是, 例如, 偏差分分) 和高质量上进行的, 因为机器学习被用来确定哪些共变数是匹配的。 DAME 解决了一个优化问题, 与尽可能多的共变数的单位匹配, 优先排序在重要的共变数中。 FLAME 接近 DAME 找到的解决方案, 通过一个更快的后退特性选择程序。 该软件包提供了几个可调整的参数, 以调整这些算出特定应用程序的处理效果。 这些参数的描述、 估计治疗效果的细节和进一步的例子, 可见于 https://matching- exactly.githoub- DAMAME- FRAMYth) 。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
115+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
11+阅读 · 2018年5月14日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月7日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
22+阅读 · 2019年11月24日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
11+阅读 · 2018年5月14日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员