Timeliness is an emerging requirement for many Internet of Things (IoT) applications. In IoT networks, where a large-number of nodes are distributed, severe interference may incur during the transmission phase which causes age of information (AoI) degradation. It is therefore important to study the performance limit of AoI as well as how to achieve such limit. In this paper, we aim to optimize the AoI in random access Poisson networks. By taking into account the spatio-temporal interactions amongst the transmitters, an expression of the peak AoI is derived, based on explicit expressions of the optimal peak AoI and the corresponding optimal system parameters including the packet arrival rate and the channel access probability are further derived. It is shown that with a given packet arrival rate (resp. a given channel access probability), the optimal channel access probability (resp. the optimal packet arrival rate), is equal to one under a small node deployment density, and decrease monotonically as the spatial deployment density increases due to the severe interference caused by spatio-temproal coupling between transmitters. When joint tuning of the packet arrival rate and channel access probability is performed, the optimal channel access probability is always set to be one. Moreover, with the sole tuning of the channel access probability, it is found that the optimal peak AoI performance can be improved with a smaller packet arrival rate only when the node deployment density is high, which is contrast to the case of the sole tuning of the packet arrival rate, where a higher channel access probability always leads to better optimal peak AoI regardless of the node deployment density. In all the cases of optimal tuning of system parameters, the optimal peak AoI linearly grows with the node deployment density as opposed to an exponential growth with fixed system parameters.


翻译:对许多Tings(IoT)互联网应用程序来说,及时性是一个新出现的要求。在IoT网络中,分配了大量节点,在传输阶段可能会发生严重干扰,导致信息老化(AoI)退化。因此,必须研究AoI的性能限制以及如何达到这种限制。在本文中,我们的目标是在随机访问Poisson网络时优化AoI。考虑到发射机之间的时空互动,根据最佳AoI峰值和相应的最精确系统参数的清晰表示,在传送阶段可能会发生严重干扰,包括包到达率和频道访问概率进一步推算。在给定的包到达率(resp)下,最佳频道访问概率(resp)等于在小节点部署密度下优化访问率,并且随着所有空间部署密度的增加,AoI峰值的峰值表示,在最优化部署速度与最接近的发射阶段之间发生严重干扰,而最优化的A-topro 交付率参数参数推导出最优化的Aroral-rol 运行一个最佳频道的概率测测测得最佳访问系统。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员