Link Prediction is a foundational task in Graph Representation Learning, supporting applications like link recommendation, knowledge graph completion and graph generation. Graph Neural Networks have shown the most promising results in this domain and are currently the de facto standard approach to learning from graph data. However, a key distinction exists between Undirected and Directed Link Prediction: the former just predicts the existence of an edge, while the latter must also account for edge directionality and bidirectionality. This translates to Directed Link Prediction (DLP) having three sub-tasks, each defined by how training, validation and test sets are structured. Most research on DLP overlooks this trichotomy, focusing solely on the "existence" sub-task, where training and test sets are random, uncorrelated samples of positive and negative directed edges. Even in the works that recognize the aforementioned trichotomy, models fail to perform well across all three sub-tasks. In this study, we experimentally demonstrate that training Neural DLP (NDLP) models only on the existence sub-task, using methods adapted from Neural Undirected Link Prediction, results in parameter configurations that fail to capture directionality and bidirectionality, even after rebalancing edge classes. To address this, we propose three strategies that handle the three tasks simultaneously. Our first strategy, the Multi-Class Framework for Neural Directed Link Prediction (MC-NDLP) maps NDLP to a Multi-Class training objective. The second and third approaches adopt a Multi-Task perspective, either with a Multi-Objective (MO-DLP) or a Scalarized (S-DLP) strategy. Our results show that these methods outperform traditional approaches across multiple datasets and models, achieving equivalent or superior performance in addressing the three DLP sub-tasks.


翻译:暂无翻译

1
下载
关闭预览

相关内容

网络中的链路预测(Link Prediction)是指如何通过已知的网络节点以及网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。这种预测既包含了对未知链接(exist yet unknown links)的预测也包含了对未来链接(future links)的预测。该问题的研究在理论和应用两个方面都具有重要的意义和价值 。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员