In view of the security issues of the Internet of Things (IoT), considered better combining edge computing and blockchain with the IoT, integrating attribute-based encryption (ABE) and attribute-based access control (ABAC) models with attributes as the entry point, an attribute-based encryption and access control scheme (ABE-ACS) has been proposed. Facing Edge-Iot, which is a heterogeneous network composed of most resource-limited IoT devices and some nodes with higher computing power. For the problems of high resource consumption and difficult deployment of existing blockchain platforms, we design a lightweight blockchain (LBC) with improvement of the proof-of-work consensus. For the access control policies, the threshold tree and LSSS are used for conversion and assignment, stored in the blockchain to protect the privacy of the policy. For device and data, six smart contracts are designed to realize the ABAC and penalty mechanism, with which ABE is outsourced to edge nodes for privacy and integrity. Thus, our scheme realizing Edge-Iot privacy protection, data and device controlled access. The security analysis shows that the proposed scheme is secure and the experimental results show that our LBC has higher throughput and lower resources consumption, the cost of encryption and decryption of our scheme is desirable.
翻译:鉴于Tings Internet(IoT)的安全问题,认为将边缘计算和链锁与IoT更好地结合起来,将基于属性的加密和基于属性的入口控制(ABAC)模式与属性的入口点、基于属性的加密和入口控制(ABAC)计划(ABE-ACS)结合起来。面对Edge-Iot(Edge-Iot)的安全问题,这是一个由大多数资源有限的IoT装置和一些计算能力较高的节点组成的不同网络。关于高资源消耗和难以部署现有链锁平台的问题,我们设计了一个轻量的连锁(LBC),改进了工作验证共识。对于准入控制政策,使用门槛树和LSSS(ABC)用于转换和分配,储存在安全链中,以保护政策的隐私。关于设备和数据,6个智能合同旨在实现ABAC和惩罚机制,将ABE外包给隐私和完整性的边缘节点。因此,我们实现EG-Iot隐私保护、数据和装置控制访问的计划(LBC)的难度很大。安全分析显示,我们的拟议消费计划通过LV的低价计划是安全的,我们理想的消费计划。