A major factor contributing to the success of modern representation learning is the ease of performing various vector operations. Recently, objects with geometric structures (eg. distributions, complex or hyperbolic vectors, or regions such as cones, disks, or boxes) have been explored for their alternative inductive biases and additional representational capacities. In this work, we introduce Box Embeddings, a Python library that enables researchers to easily apply and extend probabilistic box embeddings.
翻译:现代代表性学习取得成功的一个主要因素是各种矢量操作的容易进行。最近,探索了具有几何结构的物体(如分布、复杂或超偏向矢量或锥体、磁盘或箱等区域)的替代感应偏差和额外代表性能力。在这项工作中,我们引入了盒式嵌入器,这是一个俾顿图书馆,使研究人员能够方便地应用和扩大概率嵌入箱。