Nested case-control (NCC) is a sampling method widely used for developing and evaluating risk models with expensive biomarkers on large prospective cohort studies. The biomarker values are typically obtained on a sub-cohort, consisting of all the events and a subset of non-events. However, when the number of events is not small, it might not be affordable to measure the biomarkers on all of them. Due to the costs and limited availability of bio-specimens, only a subset of events is selected to the sub-cohort as cases. For these "untypical" NCC studies, we propose a new weighting method for the inverse probability weighted (IPW) estimation. We also design a perturbation method to estimate the variance of the IPW estimator with our new weights. It accounts for between-subject correlations induced by the sampling processes for both cases and controls through perturbing their sampling indicator variables, and thus, captures all the variations. Furthermore, we demonstrate, analytically and numerically, that when cases consist of only a subset of events, our new weight produces more efficient IPW estimators than the weight proposed in Samuelsen (1997) for a standard NCC design. We illustrate the estimating procedure with a study that aims to evaluate a biomarker-based risk prediction model using the Framingham cohort study.


翻译:内置案例控制(NCC)是一种广泛用于开发和评价风险模型的抽样方法,在大型未来组群研究中使用昂贵的生物标志进行大量研究。生物标志值通常在亚焦中获得,包括所有事件和非活动的一个子组。然而,当事件数量不小时,衡量所有事件的生物标志可能负担不起。由于生物光谱的成本和可得性有限,只有一组事件被选入亚焦中作为案例。对于这些“非典型的” NCC研究,我们为反概率加权估计提出了新的加权方法。我们还设计了一种粗略方法,用以估计IPW估计器与我们新加权值的差异。它说明了采样过程引发的所有案件之间的关联,并通过扰动其抽样指标变量来控制,从而捕捉所有变异。此外,我们从分析角度和数字角度表明,当案件仅包括一个子组时,我们的新加权值将用一个高效的 IPW 估测算机组群(NIPC) 标准程序用一个高效的估测算结果。我们用一个比标准估测标的 IPW IM 的模型来评估一个比基准研究。

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
专知会员服务
53+阅读 · 2020年9月7日
【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
35+阅读 · 2020年8月23日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2020年8月3日
Arxiv
0+阅读 · 2021年6月1日
Learning to Importance Sample in Primary Sample Space
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
专知会员服务
53+阅读 · 2020年9月7日
【ICML2020】文本摘要生成模型PEGASUS
专知会员服务
35+阅读 · 2020年8月23日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2020年8月3日
Top
微信扫码咨询专知VIP会员