Recent developments in softwarization of networked infrastructures combined with containerization of computing workflows promise unprecedented compute anywhere and everywhere capabilities for federations of edge and remote computing systems and science instruments. The development and testing of software stacks that implement these capabilities over physical production federations, however, is not very practical nor cost-effective. In response, we develop a digital twin of the physical infrastructure, called the Virtual Federated Science Instrument Environment (VFSIE). This framework emulates the federation using containers and hosts connected over an emulated network, and supports the development and testing of federation stacks and workflows. We illustrate its use in a case study involving Jupiter Notebook computations and instrument control.


翻译:网络基础设施的软化发展,加上计算机工作流程的集装箱化,使得边际和远程计算机系统和科学仪器联合会在任何地方和任何地方的能力都有可能得到前所未有的计算。然而,开发和测试这些能力高于实际生产联合会的软件堆积并不十分实用,成本效益也不高。作为回应,我们开发了一个称为虚拟联邦科学仪器环境(VFSIE)的有形基础设施数字双胞胎。这个框架效仿联邦,使用集装箱和东道主连接在一个效仿的网络上,支持开发和测试联合会的堆叠和工作流程。我们在木星笔记本计算和仪器控制的案例研究中展示了它的用途。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
3+阅读 · 2019年1月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Arxiv
0+阅读 · 2021年3月25日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
已删除
将门创投
3+阅读 · 2019年1月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Top
微信扫码咨询专知VIP会员