Coronavirus Disease 2019 (COVID-19) is a rapidly emerging respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the rapid human-to-human transmission of SARS-CoV-2, many healthcare systems are at risk of exceeding their healthcare capacities, in particular in terms of SARS-CoV-2 tests, hospital and intensive care unit (ICU) beds and mechanical ventilators. Predictive algorithms could potentially ease the strain on healthcare systems by identifying those who are most likely to receive a positive SARS-CoV-2 test, be hospitalised or admitted to the ICU. Here, we study clinical predictive models that estimate, using machine learning and based on routinely collected clinical data, which patients are likely to receive a positive SARS-CoV-2 test, require hospitalisation or intensive care. To evaluate the predictive performance of our models, we perform a retrospective evaluation on clinical and blood analysis data from a cohort of 5644 patients. Our experimental results indicate that our predictive models identify (i) patients that test positive for SARS-CoV-2 a priori at a sensitivity of 75% (95% CI: 67%, 81%) and a specificity of 49% (95% CI: 46%, 51%), (ii) SARS-CoV-2 positive patients that require hospitalisation with 0.92 AUC (95% CI: 0.81, 0.98), and (iii) SARS-CoV-2 positive patients that require critical care with 0.98 AUC (95% CI: 0.95, 1.00). In addition, we determine which clinical features are predictive to what degree for each of the aforementioned clinical tasks. Our results indicate that predictive models trained on routinely collected clinical data could be used to predict clinical pathways for COVID-19, and therefore help inform care and prioritise resources.


翻译:2019年科罗纳病毒(COVID-19)是严重急性呼吸系统综合症(SARS-COV-2)2(SARS-COV-2)2(SARS-COV-2)2(SARS-COV-2)的快速人类向人类传播,许多保健系统都有可能超过其保健能力,特别是SARS-COV-2(SARS-COV-2)的检测、医院和特护单位(ICU)床和机械通风器。 预测算法通过确定最有可能接受SARS-COV-2(SAS-COV-2)测试、住院治疗或接受ICU2(SA-CR)2(SA-CR)2(SA-CR)2(SA-CR)2(SAL)2(SAL-CR)2(SAL)2(SAL)51%CR)的临床预测结果,我们预测模型显示(I-BV-2(SA-II)的检测结果为SA-BRI(SA)A(SA-BR)A(SA%CR)A(AS)59%CI(CI(AS) 59%CI(CI) 59%CI(CI) 59%和0.CI(CI(CI(IC) 5)(S) 59%CI) 需要(AS) 59%CI)/CI)/CI(AS) 5195 (AS)的精确级(AS) 5 (S) 59%(S) 59%(S) 5 (AS(AS(AS(AS)/CI)/C)/CI)/CI)/CI)/CI(S)/CI(S)/CILI(S)/CI(AS)/C)/(S)/(S) 5%CI)/CILILILILIL%CR%CI)/(SLI(S)/(S)/(S)/(S)/CR)/(AS)/(S)/(S)/(S)/(SI)/CI)/(S)/CIL%CR%CR)

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家副主席王岐山考察依图
依图科技
4+阅读 · 2018年11月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家副主席王岐山考察依图
依图科技
4+阅读 · 2018年11月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员