As the video streaming traffic in mobile networks is increasing, improving the content delivery process becomes crucial, e.g., by utilizing edge computing support. At an edge node, we can deploy adaptive bitrate (ABR) algorithms with a better understanding of network behavior and access to radio and player metrics. In this work, we present ECAS-ML, Edge Assisted Adaptation Scheme for HTTP Adaptive Streaming with Machine Learning. ECAS-ML focuses on managing the tradeoff among bitrate, segment switches, and stalls to achieve a higher quality of experience (QoE). For that purpose, we use machine learning techniques to analyze radio throughput traces and predict the best parameters of our algorithm to achieve better performance. The results show that ECAS-ML outperforms other client-based and edge-based ABR algorithms.
翻译:随着移动网络视频流流量流量的不断增长,改进内容传输流程变得至关重要,例如,利用边缘计算支持。在一个边缘节点,我们可以使用适应性比特率算法,更好地了解网络行为以及无线电和播放器的量度。在这项工作中,我们介绍了ECAS-ML、HTTP适应性流与机器学习的边际辅助适应性适应性计划。ECAS-ML侧重于管理比特率、区段开关和摊位之间的平衡,以达到更高的经验质量(QoE ) 。为此,我们使用机器学习技术来分析射线吞吐痕迹并预测我们算法的最佳参数以取得更好的业绩。结果显示ECAS-ML优于其他基于客户和边缘的ABR算法。