The Euclidean hull of a linear code $C$ is the intersection of $C$ with its Euclidean dual $C^\perp$. The hull with low dimensions gets much interest due to its crucial role in determining the complexity of algorithms for computing the automorphism group of a linear code and checking permutation equivalence of two linear codes. The Euclidean hull of a linear code has been applied to the so-called entanglement-assisted quantum error-correcting codes (EAQECCs) via classical error-correcting codes. In this paper, we consider linear codes with one-dimensional Euclidean hull from algebraic geometry codes. Several classes of optimal linear codes with one-dimensional Euclidean hull are constructed. Some new EAQECCs are presented.
翻译:线性代码 $C 的 Euclidean 船体是 $C 与 Euclidean 双倍 $C perp$ 的交叉点。 低尺寸的船体因其在确定计算线性代码的自动形态学组的算法的复杂性和检查两个线性代码的变异等值方面的关键作用而引起极大兴趣。 线性代码的 Euclide 船体已经通过经典错误校正代码应用于所谓的纠缠辅助量子错误校正代码(EAQECCs )。 在本文中,我们考虑了从代数几何测码中取出一维的 Euclidean 船体的线性代码。 构建了几类带有一维 Euclidean 船体的最佳线性代码。 介绍了一些新的 EAQECC 。