This paper proposes an artificial neural network to determine orientation using polarized skylight. This neural network has specific dilated convolution, which can extract light intensity information of different polarization directions. Then, the degree of polarization (DOP) and angle of polarization (AOP) are directly extracted in the network. In addition, the exponential function encoding of orientation is designed as the network output, which can better reflect the insect's encoding of polarization information, and improve the accuracy of orientation determination. Finally, training and testing were conducted on a public polarized skylight navigation dataset, and the experimental results proved the stability and effectiveness of the network.
翻译:本文建议建立一个人工神经网络,用极化天窗来确定方向。 这个神经网络有特定的膨胀变异, 能够提取不同极化方向的光强度信息。 然后, 在网络中直接提取极化的程度( DOP) 和极化的角( AOP) 。 此外, 方向的指数函数编码被设计为网络输出, 它可以更好地反映昆虫对极化信息的编码, 并提高方向测定的准确性。 最后, 在公共极化天光导航数据集上进行了培训和测试, 实验结果证明了网络的稳定性和有效性 。