Industrial Internet of Things (IIoT) networks have become an increasingly attractive target of cyberattacks. Powerful Machine Learning (ML) models have recently been adopted to implement Network Intrusion Detection Systems (NIDSs), which can protect IIoT networks. For the successful training of such ML models, it is important to select the right set of data features, which maximise the detection accuracy as well as computational efficiency. This paper provides an extensive analysis of the optimal feature sets in terms of the importance and predictive power of network attacks. Three feature selection algorithms; chi-square, information gain and correlation have been utilised to identify and rank data features. The features are fed into two ML classifiers; deep feed-forward and random forest, to measure their attack detection accuracy. The experimental evaluation considered three NIDS datasets: UNSW-NB15, CSE-CIC-IDS2018, and ToN-IoT in their proprietary flow format. In addition, the respective variants in NetFlow format were also considered, i.e., NF-UNSW-NB15, NF-CSE-CIC-IDS2018, and NF-ToN-IoT. The experimental evaluation explored the marginal benefit of adding features one-by-one. Our results show that the accuracy initially increases rapidly with the addition of features, but converges quickly to the maximum achievable detection accuracy. Our results demonstrate a significant potential of reducing the computational and storage cost of NIDS while maintaining near-optimal detection accuracy. This has particular relevance in IIoT systems, with typically limited computational and storage resource.


翻译:为了成功培训这些ML模型,必须选择正确的数据集特征,以最大限度地提高检测准确性和计算效率。本文从网络袭击的重要性和预测力的角度对最佳功能集进行了广泛分析。三种特征选择算法;奇异方位、信息增益和相关性被用于识别和排序数据特征。这些特征被输入两个ML分类器;深向前和随机森林,以测量其袭击检测的准确性。实验评估考虑了三个NIDS数据集:UNS-NB15、CSE-CIC-IDS-2018和TON-IOIO的自有流量格式。此外,还考虑了NetFlow格式中各自的变量,即NF-UNS-NB-15、信息增益和相关变量,以查明和排序数据特征。这些功能被输入到两个MLSG-NF-C-SEIC的分类中; 深度向前进和随机森林,以衡量其袭击检测的准确性。实验性评估考虑了三个国家数据库数据集:UNS-NF-C-C-ID的精确性、IF-IL-I-ILS的快速评估结果,然后以我们的可实现。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
金融人工智能,40页pdf
专知会员服务
144+阅读 · 2021年10月9日
专知会员服务
33+阅读 · 2021年9月16日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
101+阅读 · 2020年10月13日
【干货书】现代数据平台架构,636页pdf
专知会员服务
256+阅读 · 2020年6月15日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Top
微信扫码咨询专知VIP会员