This work makes multiple scientific contributions to the field of Indoor Localization for Ambient Assisted Living in Smart Homes. First, it presents a Big-Data driven methodology that studies the multimodal components of user interactions and analyzes the data from Bluetooth Low Energy (BLE) beacons and BLE scanners to detect a user's indoor location in a specific activity-based zone during Activities of Daily Living. Second, it introduces a context independent approach that can interpret the accelerometer and gyroscope data from diverse behavioral patterns to detect the zone-based indoor location of a user in any Internet of Things (IoT)-based environment. These two approaches achieved performance accuracies of 81.36% and 81.13%, respectively, when tested on a dataset. Third, it presents a methodology to detect the spatial coordinates of a user's indoor position that outperforms all similar works in this field, as per the associated root mean squared error - one of the performance evaluation metrics in ISO/IEC18305:2016- an international standard for testing Localization and Tracking Systems. Finally, it presents a comprehensive comparative study that includes Random Forest, Artificial Neural Network, Decision Tree, Support Vector Machine, k-NN, Gradient Boosted Trees, Deep Learning, and Linear Regression, to address the challenge of identifying the optimal machine learning approach for Indoor Localization.
翻译:这项工作为“ 智能家庭辅助生活” 的室内本地化领域做出了多种科学贡献。 首先,它展示了一种由大数据驱动的方法,研究用户互动的多式联运组成部分,分析蓝牙低能灯和低能扫描仪的数据,以检测用户在日常生活活动期间在特定活动区内的室内位置。 其次,它引入了一种独立的背景方法,可以解释不同行为模式的加速度量计和陀螺仪数据,以检测在任何基于事物(Iot)的互联网环境中用户以区域为基础的室内位置。在对数据集进行测试时,这两种方法分别达到81.36%和81.13%的性能。第三,它提供了一个方法,用以检测用户室内位置的空间坐标,该位置超过该领域的所有类似工作。 根据相关的根源平均错误----ISO/IEC/18305:2016-测试本地化和跟踪系统(IoT)用户在任何互联网环境中的以区域为基础的室内位置。最后,这两种方法在进行测试时,在数据集测试时,实现了81.36%和81.13%的兼容性。 第三,它展示了一套全面的比较研究,该方法包括了森林、BOIC-RO-RO-RO-RO-RO-RO-RO-RO-I-I-RO-I-I-I-I-I-IAR-IAR-IAR-IAR-I-I-I-I-I-I-I-RO-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-IAR-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-