This study presents QuanvNeXt, an end-to-end fully quanvolutional model for EEG-based depression diagnosis. QuanvNeXt incorporates a novel Cross Residual block, which reduces feature homogeneity and strengthens cross-feature relationships while retaining parameter efficiency. We evaluated QuanvNeXt on two open-source datasets, where it achieved an average accuracy of 93.1% and an average AUC-ROC of 97.2%, outperforming state-of-the-art baselines such as InceptionTime (91.7% accuracy, 95.9% AUC-ROC). An uncertainty analysis across Gaussian noise levels demonstrated well-calibrated predictions, with ECE scores remaining low (0.0436, Dataset 1) to moderate (0.1159, Dataset 2) even at the highest perturbation (ε = 0.1). Additionally, a post-hoc explainable AI analysis confirmed that QuanvNeXt effectively identifies and learns spectrotemporal patterns that distinguish between healthy controls and major depressive disorder. Overall, QuanvNeXt establishes an efficient and reliable approach for EEG-based depression diagnosis.


翻译:本研究提出了QuanvNeXt,一种用于基于脑电图(EEG)的抑郁症诊断的端到端全量子卷积模型。QuanvNeXt引入了一种新颖的交叉残差块,该块在保持参数效率的同时,减少了特征同质性并增强了跨特征关系。我们在两个开源数据集上评估了QuanvNeXt,其平均准确率达到93.1%,平均AUC-ROC达到97.2%,优于最先进的基线模型,如InceptionTime(准确率91.7%,AUC-ROC 95.9%)。在不同高斯噪声水平下的不确定性分析表明,其预测校准良好,即使在最高扰动水平(ε = 0.1)下,ECE分数也保持在较低(数据集1:0.0436)到中等(数据集2:0.1159)的范围。此外,事后可解释性人工智能分析证实,QuanvNeXt能够有效识别并学习区分健康对照组与重度抑郁障碍患者的频谱-时间模式。总体而言,QuanvNeXt为基于脑电图的抑郁症诊断建立了一种高效且可靠的方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员