A sum-product network (SPN) is a graphical model that allows several types of inferences to be drawn efficiently. There are two types of learning for SPNs: Learning the architecture of the model, and learning the parameters. In this paper, we tackle the second problem: We show how to learn the weights for the sum nodes, assuming the architecture is fixed, and the data is horizontally partitioned between multiple parties. The computations will preserve the privacy of each participant. Furthermore, we will use secret sharing instead of (homomorphic) encryption, which allows fast computations and requires little computational resources. To this end, we use a novel integer division to compute approximate real divisions. We also show how simple and private evaluations can be performed using the learned SPN.


翻译:产品总和网络( SPN) 是一个图形模型, 能够有效地绘制几种类型的推论。 对于 SPN 来说, 有两种类型的学习方式: 学习模型结构, 学习参数。 在本文中, 我们处理第二个问题 : 我们展示如何学习总和节点的权重, 假设结构是固定的, 数据在多个当事人之间横向分割 。 计算将保护每个参与者的隐私 。 此外, 我们将使用秘密共享, 而不是( modrophic) 加密, 这样可以快速计算, 并且不需要多少计算资源 。 为此, 我们使用新的整数分割法来计算大致的真分数 。 我们还展示如何使用所学的 SPN 进行简单和私人的评估 。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Wide Network Learning with Differential Privacy
Arxiv
0+阅读 · 2021年6月4日
VIP会员
相关VIP内容
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员