One of the assumptions of Linear Elastic Fracture Mechanics is that the crack faces are traction-free or, at most, loaded by bounded tractions. The standard Irwin's crack closure integral, widely used for the computation of the Energy Release Rate, also relies upon this assumption. However, there are practical situations where the load acting on the crack boundaries is singular. This is the case, for instance, in hydraulic fracturing, where the fluid inside the crack exerts singular tangential tractions at its front. Another example of unbounded tractions is the case of a rigid line inclusion (anticrack) embedded into an elastic body. In such situations, the classical Irwin's crack closure integral fails to provide the correct value of the Energy Release Rate. In this paper, we address the effects occurring when square-root singular tractions act at the boundary of a line defect in an elastic solid and provide a generalisation of Irwin's crack closure integral. The latter yields the correct Energy Release Rate and allows broad applications, including, among others, hydraulic fracturing, soft materials containing stiff inclusions, rigid inclusions, shear bands and cracks characterized by the Gurtin-Murdoch surface stress elasticity. We present the results in the most general form, where six Stress Intensity Factors are present: three of them are classical SIFs corresponding to the modes I-II-III and computed under the assumption of homogeneous boundary conditions at the defect surfaces, while the other three SIFs are associated with singular admissible tractions (those that lead to a finite ERR value). It is demonstrated that this approach resolves an ambiguity in using the same SIF's terminology in the cases of open cracks and rigid inclusions, among other benefits.


翻译:线性 Elastic Fracture Mechanic 的假设之一是,裂纹面部是没有牵引的,或者最多是被绑定的牵引。标准的Irwin 的裂缝封闭部分是用来计算能源释放率的,也依据这一假设。然而,有些实际情况是,裂缝边界上产生的负负负是奇特的。例如,液压裂变就是这种情况,裂缝内流的液压在其前端产生奇异的正正正正正正正的分流。另一个非正向偏斜的角是嵌入一个弹性的地平面体。在这种情况下,古典Irwin的裂缝封闭部分无法提供能源释放率的正确值。在本文中,当平面的单向线缺陷的边界移动时,当Irwin 的液压断裂变时, 后者产生正确的能源释放率,并允许广泛的应用,包括,在其它情况下, 液压的三直流、软的直径直径直的直截面的内置部分, 当我们用直径直径的平面的平面的平面的内压的内压的内压, 直径的内压的内压的内压的内压的内压, 。

0
下载
关闭预览

相关内容

AlphaZero原理与启示
专知会员服务
33+阅读 · 2020年8月23日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
59+阅读 · 2019年11月10日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
0+阅读 · 2021年6月3日
VIP会员
相关VIP内容
AlphaZero原理与启示
专知会员服务
33+阅读 · 2020年8月23日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
59+阅读 · 2019年11月10日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员