We present a Newton-Krylov solver for a viscous-plastic sea-ice model. This constitutive relation is commonly used in climate models to describe the large scale sea-ice motion. Due to the strong nonlinearity of the momentum equation, the development of fast, robust and scalable solvers is still a substantial challenge. We propose a novel primal-dual Newton linearization for the momentum equation. In contrast to existing methods, it converges faster and more robustly with respect to mesh refinement, and thus allows fully resolved sea-ice simulations. Combined with an algebraic multigrid-preconditioned Krylov method for the Newton linearized systems, which contain strongly varying coefficients, the resulting solver scales well and can be used in parallel. We present highly resolved benchmark solutions and solve problems with up to 8.4 million spatial unknowns.
翻译:我们提出了一个牛顿-克里洛夫(Newton-Krylov) 的粘粘塑料海洋冰模型解答器。 这种构成关系在气候模型中通常用于描述大型海冰运动。 由于动力方程式的强非线性,开发快速、稳健和可缩放的解答器仍是一个巨大的挑战。 我们为动力方程式提出了一个新颖的原始双牛顿线化方法。 与现有方法相比,它与网状精细相比,会更快、更强有力地融合,从而可以进行完全解决的海冰模拟。 与牛顿线性系统具有代数多格网化的克里洛夫(Krylov)法相结合, 后者包含极不相同的系数, 由此产生的求解器比例很好, 并且可以同时使用。 我们提出了高度解决的基准解决方案, 并解决了高达840万个空间未知数的问题。