The Prechtl General Movements Assessment (GMA) has become a clinician and researcher tool-box for evaluating neurodevelopment in early infancy. Given it involves observation of infant movements from video recordings, utilising smartphone applications to obtain these recordings seems like the natural progression for the field. In this review, we look back on the development of apps for acquiring general movement videos, describe the application and research studies of available apps, and discuss future directions of mobile solutions and their usability in research and clinical practice. We emphasise the importance of understanding the background that has led to these developments while introducing new technologies, including the barriers and facilitators along the pathway. The GMApp and Baby Moves App were the first ones developed to increase accessibility of the GMA, with two further apps, NeuroMotion and InMotion, designed since. The Baby Moves app has been applied most frequently. For the mobile future of GMA, we advocate collaboration to boost the field's progression and to reduce research waste. We propose future collaborative solutions including standardisation of cross-sites data collection, adaption to local context and privacy laws, employment of user feedback, and sustainable IT structures enabling continuous software updating.


翻译:Prechtl 泛运动评估(GMA)已成为早期婴幼儿神经发育评估的医师和研究人员工具箱。考虑到它涉及从视频记录中观察婴儿运动,利用智能手机应用程序获取这些录像似乎是该领域的自然进步。在本综述中,我们回顾了为获取常规运动视频开发应用程序的发展历程,描述了可用应用程序和研究研究,并讨论了移动解决方案及其在研究和临床实践中的可用性的未来方向。我们强调了了解导致这些发展的背景的重要性,同时引入新技术,包括沿途的障碍和促进因素。GMApp 和 Baby Moves App是第一批被开发的应用程序,旨在增加获得 GMA 的便利性,在此之后,设计了另外两个应用程序 NeuroMotion 和InMotion。Baby Moves 应用程序被应用最频繁。针对 GMA 的移动未来,我们倡导合作共同推动该领域的进步,并减少研究浪费。我们提出了未来的协作解决方案,包括跨站点数据收集的标准化、适应本地情况和隐私法律、利用用户反馈、以及可持续 IT 结构,实现连续软件更新。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员