More information leads to better decisions and predictions, right? Confirming this hypothesis, several studies concluded that the simultaneous use of optical and thermal images leads to better predictions in crowd counting. However, the way multimodal models extract enriched features from both modalities is not yet fully understood. Since the use of multimodal data usually increases the complexity, inference time, and memory requirements of the models, it is relevant to examine the differences and advantages of multimodal compared to monomodal models. In this work, all available multimodal datasets for crowd counting are used to investigate the differences between monomodal and multimodal models. To do so, we designed a monomodal architecture that considers the current state of research on monomodal crowd counting. In addition, several multimodal architectures have been developed using different multimodal learning strategies. The key components of the monomodal architecture are also used in the multimodal architectures to be able to answer whether multimodal models perform better in crowd counting in general. Surprisingly, no general answer to this question can be derived from the existing datasets. We found that the existing datasets hold a bias toward thermal images. This was determined by analyzing the relationship between the brightness of optical images and crowd count as well as examining the annotations made for each dataset. Since answering this question is important for future real-world applications of crowd counting, this paper establishes criteria for a potential dataset suitable for answering whether multimodal models perform better in crowd counting in general.


翻译:信息越多,就能做出越好的决策和预测,这个假设是正确的,因为几项研究表明,同时使用光学和热成像可以更好地预测人群计数。然而,多模态模型从两种模态提取丰富特征的方式还不完全清楚。由于使用多模态数据通常增加了模型的复杂性、推理时间和内存需求,因此研究多模态与单模态模型之间的差异和优势非常重要。在本研究中,我们使用了所有可用的多模态人群计数数据集来研究单模态和多模态模型之间的差异。为此,我们设计了一个单模态模型,考虑了当前单模态人群计数研究中的关键组件。此外,我们还开发了几个多模态模型,使用了不同的多模态学习策略。单模态模型的关键组件也被用于多模态模型中,以便回答多模态模型是否普遍表现更好的问题。令人惊讶的是,现有的数据集无法得出这个问题的普遍答案。我们发现,现有的数据集存在对热成像图片的偏见。这是通过分析光学图片的亮度和人群计数之间的关系以及检查每个数据集的注释来确定的。由于回答这个问题对于未来的人群计数的实际应用非常重要,因此本论文确定了一个潜在的数据集选择标准,以回答多模态模型是否普遍表现更好的问题。

0
下载
关闭预览

相关内容

视频自监督学习综述
专知会员服务
52+阅读 · 2022年7月5日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
103+阅读 · 2021年6月8日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
15+阅读 · 2019年6月25日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员